Molecular Basis of MgATP Selectivity of the Mitochondrial SCaMC Carrier.

نویسندگان

  • Changqing Run
  • Qin Yang
  • Zhijun Liu
  • Bo OuYang
  • James J Chou
چکیده

The mitochondrial matrix is the supplier of cellular ATP. The short Ca(2+)-binding mitochondrial carrier (SCaMC) is one of the two mitochondrial carriers responsible for transporting ATP across the mitochondrial inner membrane. While the ADP/ATP carrier (AAC) accounts for the bulk ADP/ATP recycling in the matrix, the function of SCaMC is important for mitochondrial activities that depend on adenine nucleotides, such as gluconeogenesis and mitochondrial biogenesis. A key difference between SCaMC and AAC is that SCaMC selectively transports MgATP whereas AAC only transports free nucleotides. Here, we use a combination of nuclear magnetic resonance experiments and functional mutagenesis to investigate the structural basis of the MgATP selectivity in SCaMC. Our data revealed an MgATP binding site inside the transporter cavity, while identifying an aspartic acid residue that plays an important role in the higher selectivity for MgATP over free ATP.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A self-sequestered calmodulin-like Ca²⁺ sensor of mitochondrial SCaMC carrier and its implication to Ca²⁺-dependent ATP-Mg/P(i) transport.

The mitochondrial carriers play essential roles in energy metabolism. The short Ca²⁺-binding mitochondrial carrier (SCaMC) transports ATP-Mg in exchange for Pi and is important for activities that depend on adenine nucleotides. SCaMC adopts, in addition to the transmembrane domain (TMD) that transports solutes, an extramembrane N-terminal domain (NTD) that regulates solute transport in a Ca²⁺-d...

متن کامل

Mitochondrial ATP-Mg/Pi carrier SCaMC-3/Slc25a23 counteracts PARP-1-dependent fall in mitochondrial ATP caused by excitotoxic insults in neurons.

Glutamate excitotoxicity is caused by sustained activation of neuronal NMDA receptors causing a large Ca(2+) and Na(+) influx, activation of poly(ADP ribose) polymerase-1 (PARP-1), and delayed Ca(2+) deregulation. Mitochondria undergo early changes in membrane potential during excitotoxicity, but their precise role in these events is still controversial. Using primary cortical neurons derived f...

متن کامل

SCaMC-1Like a Member of the Mitochondrial Carrier (MC) Family Preferentially Expressed in Testis and Localized in Mitochondria and Chromatoid Body

Mitochondrial carriers (MC) form a highly conserved family involved in solute transport across the inner mitochondrial membrane in eukaryotes. In mammals, ATP-Mg/Pi carriers, SCaMCs, form the most complex subgroup with four paralogs, SCaMC-1, -2, -3 and -3L, and several splicing variants. Here, we report the tissue distribution and subcellular localization of a mammalian-specific SCaMC paralog,...

متن کامل

Glucagon regulation of oxidative phosphorylation requires an increase in matrix adenine nucleotide content through Ca2+ activation of the mitochondrial ATP-Mg/Pi carrier SCaMC-3.

It has been known for a long time that mitochondria isolated from hepatocytes treated with glucagon or Ca(2+)-mobilizing agents such as phenylephrine show an increase in their adenine nucleotide (AdN) content, respiratory activity, and calcium retention capacity (CRC). Here, we have studied the role of SCaMC-3/slc25a23, the mitochondrial ATP-Mg/Pi carrier present in adult mouse liver, in the co...

متن کامل

Purification, crystallization and preliminary X-ray diffraction of the N-terminal calmodulin-like domain of the human mitochondrial ATP-Mg/Pi carrier SCaMC1.

SCaMC is an ATP-Mg/Pi carrier protein located at the mitochondrial inner membrane. SCaMC has an unusual N-terminal Ca(2+)-binding domain (NTD) in addition to its characteristic six-helix transmembrane bundle. The NTD of human SCaMC1 (residues 1-193) was expressed and purified in order to study its role in Ca(2+)-regulated ATP-Mg/Pi transport mediated by its transmembrane domain. While Ca(2+)-bo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Structure

دوره 23 8  شماره 

صفحات  -

تاریخ انتشار 2015